Apart from THC, (relatively) non-psychotropic cannabinoids such as THCV, CBD and CBG were found to have anti-inflammatory effects in experimental intestinal inflammation (Alhouayek and Muccioli, 2012).
Polymorphisms (small, single nucleotide mutations) in the CB1 gene/receptor are linked to the susceptibility to develop Crohn’s Disease, suggesting the involvement of the endocannabinoid system in Crohn’s Disease (Storr et al., 2010).
Apart from CB1 and CB2, there is evidence for the involvement of Crohn’s Disease (de Fontgalland et al., 2014; Schicho and Storr, 2014).
Patients with Crohn’s Disease have significantly reduced levels of Anandamide, but not 2AG or PEA, supporting a role for the endocannabinoid system in Crohn’s Disease (Di Sabatino et al., 2011).
Many Crohn’s Disease patients self-administer cannabis suggesting a role for cannabinoids in the treatment of Crohn’s or in the alleviation of its symptoms. Although many patients reported symptomatic improvement of abdominal pain (83.9%), abdominal cramping (76.8%), joint pain (48.2%) and diarrhea (28.6%), cannabis use was also associated with increased hospitalization (Storr et al., 2014). This could be explained as cannabis (or the vehicle it comes in, like tobacco) being harmful in Crohn’s. Alternatively, patients with more severe Crohn’s Disease may be sooner inclined to use cannabis to alleviate the symptoms.
TRP receptors (TRPV1-4, TRPA1, TRPM8) are classically known for their role in pain sensation but may also be involved in inflammation. TRPs bind to most plant cannabinoids and endocannabinoids with varying affinities (De Petrocellis et al., 2011, 2012), tentatively making TRPs excellent targets and plant cannabinoids excellent substrates for pain and inflammation management. More research is required to test the full therapeutic potential of cannabinoids in Crohn’s Disease.
References:
Alhouayek, M., and Muccioli, G.G. (2012). The endocannabinoid system in inflammatory bowel diseases: from pathophysiology to therapeutic opportunity. Trends Mol. Med. 18, 615–625.
De Fontgalland, D., Brookes, S.J., Gibbins, I., Sia, T.C., and Wattchow, D.A. (2014). The neurochemical changes in the innervation of human colonic mesenteric and submucosal blood vessels in ulcerative colitis and Crohn’s disease. Neurogastroenterol. Motil. Off. J. Eur. Gastrointest. Motil. Soc. 26, 731–744.
De Petrocellis, L., Ligresti, A., Moriello, A.S., Allarà, M., Bisogno, T., Petrosino, S., Stott, C.G., and Di Marzo, V. (2011). Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br. J. Pharmacol. 163, 1479–1494.
De Petrocellis, L., Orlando, P., Moriello, A.S., Aviello, G., Stott, C., Izzo, A.A., and Di Marzo, V. (2012). cannabinoid actions at TRPV channels: effects on TRPV3 and TRPV4 and their potential relevance to gastrointestinal inflammation. Acta Physiol. Oxf. Engl. 204, 255–266.
Di Sabatino, A., Battista, N., Biancheri, P., Rapino, C., Rovedatti, L., Astarita, G., Vanoli, A., Dainese, E., Guerci, M., Piomelli, D., et al. (2011). The endogenous cannabinoid system in the gut of patients with inflammatory bowel disease. Mucosal Immunol. 4, 574–583.
Schicho, R., and Storr, M. (2014). Cannabis finds its way into treatment of Crohn’s disease. Pharmacology 93, 1–3.
Storr, M., Emmerdinger, D., Diegelmann, J., Pfennig, S., Ochsenkühn, T., Göke, B., Lohse, P., and Brand, S. (2010). The cannabinoid 1 receptor (CNR1) 1359 G/A polymorphism modulates susceptibility to ulcerative colitis and the phenotype in Crohn’s disease. PloS One 5, e9453.
Storr, M., Devlin, S., Kaplan, G.G., Panaccione, R., and Andrews, C.N. (2014). Cannabis use provides symptom relief in patients with inflammatory bowel disease but is associated with worse disease prognosis in patients with Crohn’s disease. Inflamm. Bowel Dis. 20, 472–480.