CBDV is a non-psychoactive cannabinoid with anti-convulsant properties like its homolog CBD. It has also other potential therapeutic properties as antitumorigenic, anti-acne and antiemetic effects. More research is needed to reveal all the therapeutic properties of CBDV.

Chemical Name: 
Wikipedia entry: 
Synthetic Pathways: 

CBDV is synthesized by decarboxylation of CBDVA.

Literature Discussion: 

CBDV binds to CB1 and CB2 receptors (Rosenthaler et al., 2014)

CBDV activates and desensitizes TRPV1, TRPV2 and TRPA1, inhibites DAGLα, MAGL and ACU (De Petrocellis et al., 2011; Iannotti et al., 2014)

CBDV, CBGA, and CBGV inhibit LPI-induced GPR55 signaling, which can be relevant for the treatment of cancer, pain, and metabolic disorders (Anavi-Goffer et al., 2012)

CBDV showed cytotoxicity in neuroblastoma cells (Rosenthaler et al., 2014)

CBDV, as well as CBD, have a huge potential to treat epilepsy (Gaston & Friedman, 2017; Rosenberg, Patra, & Whalley, 2017, Wallace et al., 2001). CBDV showed anticonvulsant properties in three different models of seizure, with additive effects when it was co-administered with CBD. Anticonvulsant properties of CBDV were not CB1 mediated (Hill et al., 2013). In vitro studies also support the anti-epileptic properties of CBDV (Amada, Yamasaki, Williams, & Whalley, 2013; A. J. Hill et al., 2012).

CBDV, as well as THCV, could have therapeutic potential to reduce nausea (Rock, Sticht, Duncan, Stott, & Parker, 2013)

CBDV, as well as CBC and THCV shows therapeutic potential to treat acne (Oláh et al., 2016)

CBDV also showed potential to treat bladder dysfunctions (Pagano et al., 2015)


Amada, N., Yamasaki, Y., Williams, C. M., & Whalley, B. J. (2013). Cannabidivarin (CBDV) suppresses pentylenetetrazole (PTZ)-induced increases in epilepsy-related gene expression. PeerJ, 1, e214. https://doi.org/10.7717/peerj.214

Anavi-Goffer, S., Baillie, G., Irving, A. J., Gertsch, J., Greig, I. R., Pertwee, R. G., & Ross, R. A. (2012). Modulation of L-α-lysophosphatidylinositol/GPR55 mitogen-activated protein kinase (MAPK) signaling by cannabinoids. The Journal of Biological Chemistry, 287(1), 91-104. https://doi.org/10.1074/jbc.M111.296020

De Petrocellis, L., Ligresti, A., Moriello, A. S., Allarà, M., Bisogno, T., Petrosino, S., … Di Marzo, V. (2011). Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. British Journal of Pharmacology, 163(7), 1479-1494. https://doi.org/10.1111/j.1476-5381.2010.01166.x

Gaston, T. E., & Friedman, D. (2017). Pharmacology of cannabinoids in the treatment of epilepsy. Epilepsy & Behavior: E&B. https://doi.org/10.1016/j.yebeh.2016.11.016

Hill, A. J., Mercier, M. S., Hill, T. D. M., Glyn, S. E., Jones, N. A., Yamasaki, Y., … Whalley, B. J. (2012). Cannabidivarin is anticonvulsant in mouse and rat. British Journal of Pharmacology, 167(8), 1629-1642. https://doi.org/10.1111/j.1476-5381.2012.02207.x

Hill, T. D. M., Cascio, M.-G., Romano, B., Duncan, M., Pertwee, R. G., Williams, C. M., … Hill, A. J. (2013). Cannabidivarin-rich cannabis extracts are anticonvulsant in mouse and rat via a CB1 receptor-independent mechanism. British Journal of Pharmacology, 170(3), 679-692. https://doi.org/10.1111/bph.12321

Iannotti, F. A., Hill, C. L., Leo, A., Alhusaini, A., Soubrane, C., Mazzarella, E., … Stephens, G. J. (2014). Nonpsychotropic plant cannabinoids, cannabidivarin (CBDV) and cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) channels in vitro: potential for the treatment of neuronal hyperexcitability. ACS Chemical Neuroscience, 5(11), 1131-1141. https://doi.org/10.1021/cn5000524

Oláh, A., Markovics, A., Szabó-Papp, J., Szabó, P. T., Stott, C., Zouboulis, C. C., & Bíró, T. (2016). Differential effectiveness of selected non-psychotropic phytocannabinoids on human sebocyte functions implicates their introduction in dry/seborrhoeic skin and acne treatment. Experimental Dermatology, 25(9), 701-707. https://doi.org/10.1111/exd.13042

Pagano, E., Montanaro, V., Di Girolamo, A., Pistone, A., Altieri, V., Zjawiony, J. K., … Capasso, R. (2015). Effect of Non-psychotropic Plant-derived cannabinoids on Bladder Contractility: Focus on Cannabigerol. Natural Product Communications, 10(6), 1009-1012.

Rock, E. M., Sticht, M. A., Duncan, M., Stott, C., & Parker, L. A. (2013). Evaluation of the potential of the phytocannabinoids, cannabidivarin (CBDV) and Δ9-tetrahydrocannabivarin (THCV), to produce CB1 receptor inverse agonism symptoms of nausea in rats. British Journal of Pharmacology, 170(3), 671-678. https://doi.org/10.1111/bph.12322

Rosenberg, E. C., Patra, P. H., & Whalley, B. J. (2017). Therapeutic effects of cannabinoids in animal models of seizures, epilepsy, epileptogenesis, and epilepsy-related neuroprotection. Epilepsy & Behavior: E&B. https://doi.org/10.1016/j.yebeh.2016.11.006

Rosenthaler, S., Pöhn, B., Kolmanz, C., Huu, C. N., Krewenka, C., Huber, A., … Moldzio, R. (2014). Differences in receptor binding affinity of several phytocannabinoids do not explain their effects on neural cell cultures. Neurotoxicology and Teratology, 46, 49-56. https://doi.org/10.1016/j.ntt.2014.09.003

Wallace, M.J., Wiley, J.L., Martin, B.R., and DeLorenzo, R.J. (2001). Assessment of the role of CB1 receptors in cannabinoid anticonvulsant effects. Eur. J. Pharmacol. 428, 51–57.