CBN is a cannabinoid with weak psycho-active properties and some therapeutic potential related to cancer, pain, ALS and eating disorders.

Chemical Name: 
Wikipedia entry: 
Synthetic Pathways: 

CBN is synthesized from CBNA through decarboxylation.

Literature Discussion: 

CBD binds to CB1 and CB2 (Petitet, Jeantaud, Reibaud, Imperato, & Dubroeucq, 1998)

CBN modulates TRPA-1, TRPV-2, TRPV-3 and TRPV-4 (De Petrocellis et al., 2012; De Petrocellis et al., 2011; Qin et al., 2008)

CBN binds also to TRPA1 and TRPM8 (Morales, Hurst, & Reggio, 2017)

CBN has anti-bacterial properties against methicillin-resistant Staphylococcus aureus (MRSA) (Appendino et al., 2008)

CBN inhibits CYP1 enzymes (Yamaori, Kushihara, Yamamoto, & Watanabe, 2010)

Some cannabinoids, including CBN, inhibit ABCC1 and ABCG2 proteins, which have a relevant role for the treatment of cancer (Holland, Lau, Allen, & Arnold, 2007; Michelle L. Holland, Allen, & Arnold, 2008)

CBN, as well as THC, modulates T cells activity, which have an important role in the immune system by controlling inflammatory processes (Herring & Kaminski, 1999; Herring, Koh, & Kaminski, 1998; Jan, Rao, & Kaminski, 2002; Rao & Kaminski, 2006). This modulation could have therapeutic potential in, for example, allergic airway diseases (Jan, Farraj, Harkema, & Kaminski, 2003). These two cannabinoids affect cell proliferation pathways which are related to the immunosuppressive and anti-tumorigenic properties of cannabinoids (Faubert & Kaminski, 2000; Faubert Kaplan & Kaminski, 2003; Herring, Faubert Kaplan, & Kaminski, 2001; Upham et al., 2003)

CBN reduces plasma-luteinizing hormone (LH) and T levels and median eminence NE turnover (Steger, Murphy, Bartke, & Smith, 1990)

CBN potentiates the THC-induced suppression of luteinizing hormone (LH) secretion in rats (Murphy, Steger, Smith, & Bartke, 1990)

CBN, THC and CBD inhibit the binding of thyrotropin releasing hormone (TRH) to the amygdala (Bhargava & Gulati, 1988)

CBN stimulates appetite and increases feeding through CB1 receptor activation (Farrimond, Whalley, & Williams, 2012)

CBN produces anti-nociceptive and analgesic properties with low or none psychoactive effects and it can increase THC anti-nociceptive and psychoactive effects (Booker, Naidu, Razdan, Mahadevan, & Lichtman, 2009; Karniol, Shirakawa, Takahashi, Knobel, & Musty, 1975; Sanders, Jackson, & Starmer, 1979; Sofia, Vassar, & Knobloch, 1975)

CBN delays the onset of myotrophic lateral sclerosis (ALS) in a transgenic mouse model of ALS (Weydt et al., 2005)

CBN causes hypothermia in doses from 10 to 30 mg/kg (Hiltunen, Järbe, & Wängdahl, 1988)

CBN and CBD inhibit catalepsy induced by THC (Formukong, Evans, & Evans, 1988)

CBN and THC inhibits Lewis lung adenocarcinoma growth in animals in a dose-dependent manner (Munson, Harris, Friedman, Dewey, & Carchman, 1975)

In a mouse model of Epilepsy (Maximal Electro Shock), the following cannabinoids were found to be anti-convulsive (ED50)(Devinsky et al., 2014): CBD 120 mg/kg Δ9THC 100 mg/kg 11-OH-Δ9THC 14 mg/kg 8β-OH-Δ9THC 100 mg/kg Δ9THCA 200-400 mg/kg Δ8THC 80 mg/kg CBN 230 mg/kg Δ9α/β-OH-hexahydro-CBN 100 mg/kg Apart from that the doses reported above are incredibly high, it does provide a proof of principle that many cannabinoids exert anti-convulsive effects.  


Appendino, G., Gibbons, S., Giana, A., Pagani, A., Grassi, G., Stavri, M., … Rahman, M. M. (2008). Antibacterial cannabinoids from Cannabis sativa: a structure-activity study. Journal of Natural Products, 71(8), 1427-1430.

Bhargava, H. N., & Gulati, A. (1988). Selective inhibition of the binding of 3H-(3-MeHis2) thyrotropin releasing hormone to rat amygdala membranes by some naturally occurring cannabinoids. Peptides, 9(4), 771-775.

Booker, L., Naidu, P. S., Razdan, R. K., Mahadevan, A., & Lichtman, A. H. (2009). Evaluation of prevalent phytocannabinoids in the acetic acid model of visceral nociception. Drug and Alcohol Dependence, 105(1-2), 42-47.

De Petrocellis, L., Orlando, P., Moriello, A. S., Aviello, G., Stott, C., Izzo, A. A., & Di Marzo, V. (2012). cannabinoid actions at TRPV channels: effects on TRPV3 and TRPV4 and their potential relevance to gastrointestinal inflammation. Acta Physiologica (Oxford, England), 204(2), 255-266.

De Petrocellis, Luciano, Ligresti, A., Moriello, A. S., Allarà, M., Bisogno, T., Petrosino, S., … Di Marzo, V. (2011). Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. British Journal of Pharmacology, 163(7), 1479-1494.

Devinsky, O., Cilio, M.R., Cross, H., Fernandez-Ruiz, J., French, J., Hill, C., Katz, R., Di Marzo, V., Jutras-Aswad, D., Notcutt, W.G., et al. (2014). Cannabidiol: pharmacology and potential therapeutic role in Epilepsy and other neuropsychiatric disorders. Epilepsia 55, 791–802.

Farrimond, J. A., Whalley, B. J., & Williams, C. M. (2012). Cannabinol and cannabidiol exert opposing effects on rat feeding patterns. Psychopharmacology, 223(1), 117-129.

Faubert, B. L., & Kaminski, N. E. (2000). AP-1 activity is negatively regulated by cannabinol through inhibition of its protein components, c-fos and c-jun. Journal of Leukocyte Biology, 67(2), 259-266.

Faubert Kaplan, B. L., & Kaminski, N. E. (2003). cannabinoids inhibit the activation of ERK MAPK in PMA/Io-stimulated mouse splenocytes. International Immunopharmacology, 3(10-11), 1503-1510.

Formukong, E. A., Evans, A. T., & Evans, F. J. (1988). Inhibition of the cataleptic effect of tetrahydrocannabinol by other constituents of Cannabis sativa L. The Journal of Pharmacy and Pharmacology, 40(2), 132-134.

Herring, A. C., Faubert Kaplan, B. L., & Kaminski, N. E. (2001). Modulation of CREB and NF-kappaB signal transduction by cannabinol in activated thymocytes. Cellular Signalling, 13(4), 241-250.

Herring, A. C., & Kaminski, N. E. (1999). Cannabinol-mediated inhibition of nuclear factor-kappaB, cAMP response element-binding protein, and interleukin-2 secretion by activated thymocytes. The Journal of Pharmacology and Experimental Therapeutics, 291(3), 1156-1163.

Herring, A. C., Koh, W. S., & Kaminski, N. E. (1998). Inhibition of the cyclic AMP signaling cascade and nuclear factor binding to CRE and kappaB elements by cannabinol, a minimally CNS-active cannabinoid. Biochemical Pharmacology, 55(7), 1013-1023.

Hiltunen, A. J., Järbe, T. U., & Wängdahl, K. (1988). Cannabinol and cannabidiol in combination: temperature, open-field activity, and vocalization. Pharmacology, Biochemistry, and Behavior, 30(3), 675-678.

Holland, M L, Lau, D. T. T., Allen, J. D., & Arnold, J. C. (2007). The multidrug transporter ABCG2 (BCRP) is inhibited by plant-derived cannabinoids. British Journal of Pharmacology, 152(5), 815-824.

Holland, Michelle L., Allen, J. D., & Arnold, J. C. (2008). Interaction of plant cannabinoids with the multidrug transporter ABCC1 (MRP1). European Journal of Pharmacology, 591(1-3), 128-131.

Jan, T.-R., Farraj, A. K., Harkema, J. R., & Kaminski, N. E. (2003). Attenuation of the ovalbumin-induced allergic airway response by cannabinoid treatment in A/J mice. Toxicology and Applied Pharmacology, 188(1), 24-35.

Jan, T.-R., Rao, G. K., & Kaminski, N. E. (2002). Cannabinol enhancement of interleukin-2 (IL-2) expression by T cells is associated with an increase in IL-2 distal nuclear factor of activated T cell activity. Molecular Pharmacology, 61(2), 446-454.

Karniol, I. G., Shirakawa, I., Takahashi, R. N., Knobel, E., & Musty, R. E. (1975). Effects of Δ9-Tetrahydrocannabinol and Cannabinol in Man. Pharmacology, 13(6), 502-512.

Morales, P., Hurst, D. P., & Reggio, P. H. (2017). Molecular Targets of the Phytocannabinoids-A Complex Picture. Progress in the chemistry of organic natural products, 103, 103-131.

Munson, A. E., Harris, L. S., Friedman, M. A., Dewey, W. L., & Carchman, R. A. (1975). Antineoplastic activity of cannabinoids. Journal of the National cancer Institute, 55(3), 597-602.

Murphy, L. L., Steger, R. W., Smith, M. S., & Bartke, A. (1990). Effects of delta-9-tetrahydrocannabinol, cannabinol and cannabidiol, alone and in combinations, on luteinizing hormone and prolactin release and on hypothalamic neurotransmitters in the male rat. Neuroendocrinology, 52(4), 316-321.

Petitet, F., Jeantaud, B., Reibaud, M., Imperato, A., & Dubroeucq, M.-C. (1998). Complex pharmacology of natural cannabivoids: Evidence for partial agonist activity of Δ9-tetrahydrocannabinol and antagonist activity of cannabidiol on rat brain cannabinoid receptors. Life Sciences, 63(1), PL1-PL6.

Qin, N., Neeper, M. P., Liu, Y., Hutchinson, T. L., Lubin, M. L., & Flores, C. M. (2008). TRPV2 Is Activated by Cannabidiol and Mediates CGRP Release in Cultured Rat Dorsal Root Ganglion Neurons. The Journal of Neuroscience, 28(24), 6231-6238.

Rao, G. K., & Kaminski, N. E. (2006). cannabinoid-mediated elevation of intracellular calcium: a structure-activity relationship. The Journal of Pharmacology and Experimental Therapeutics, 317(2), 820-829.

Sanders, J., Jackson, D. M., & Starmer, G. A. (1979). Interactions among the cannabinoids in the antagonism of the abdominal constriction response in the mouse. Psychopharmacology, 61(3), 281-285.

Sofia, R. D., Vassar, H. B., & Knobloch, L. C. (1975). Comparative analgesic activity of various naturally occurring cannabinoids in mice and rats. Psychopharmacologia, 40(4), 285-295.

Steger, R. W., Murphy, L. L., Bartke, A., & Smith, M. S. (1990). Effects of psychoactive and nonpsychoactive cannabinoids on the hypothalamic-pituitary axis of the adult male rat. Pharmacology, Biochemistry, and Behavior, 37(2), 299-302.

Upham, B. L., Rummel, A. M., Carbone, J. M., Trosko, J. E., Ouyang, Y., Crawford, R. B., & Kaminski, N. E. (2003). cannabinoids inhibit gap junctional intercellular communication and activate ERK in a rat liver epithelial cell line. International Journal of cancer, 104(1), 12-18.

Weydt, P., Hong, S., Witting, A., Möller, T., Stella, N., & Kliot, M. (2005). Cannabinol delays symptom onset in SOD1 (G93A) transgenic mice without affecting survival. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders: Official Publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases, 6(3), 182-184.

Yamaori, S., Kushihara, M., Yamamoto, I., & Watanabe, K. (2010). Characterization of major phytocannabinoids, cannabidiol and cannabinol, as isoform-selective and potent inhibitors of human CYP1 enzymes. Biochemical Pharmacology, 79(11), 1691-1698.